Trabecular bone structure in forefoot and rearfoot endurance runners: Implications for interpreting fossil hominin morphology

ANDREW BEST1, BRIGITTE HOLT2, JOSEPH HAMIL2, and KAREN TROY3. 1Department of Anthropology, University of Massachusetts, 2Department of Kinesiology, University of Massachusetts, 3Department of Biomedical Engineering, Worcester Polytechnic Institute.

Introduction

Human endurance running (ER)-prolonged aerobic/submaximal running- is hypothesized to have first evolved with H. erectus (Bramble and Lieberman, 2004). Direct evidence of ER in hominins, and evidence of hominin footstrike patterns, is lacking. Footstrike shifting (FFS), where the foot makes initial ground contact before the heel touches down, is thought to be the natural unshod condition (Lieberman et al., 2010), as opposed to rearfoot striking (RFS), where the heel makes initial contact. FFS generates a smoother ground reaction force curve (fig. 1 and 2), but Achilles tendon forces are 19% higher than in RFS (Kumala et al., 2013). Presumably, FFS places greater strain on the 1st metatarsal due to footimpact and greater strain on the calcaneus, which acts as a lever transmitting forces generated by the Achilles tendon.

Currently there is no methodology exists to interpret hominin fossils for direct evidence of endurance running. The principle of bone functional adaptation (Wolff, 1892; Ruff et al., 2006), whereby bone remodels in response to strain, presents the possibility for inferring locomotor patterns from fossils, if the bone functional responses resultant from endurance running are identified. Long bone cross-sectional geometry has proven useful in inferring locomotor patterns, and has been recently used to infer endurance running in fossil hominins (Shaw and Stolick, 2013). Trabecular density, thickness, and number are hypothesized to increase in response to loading in general (Ponzet et al., 2006; Joo et al., 2003) and to running specifically (Biewener et al., 1996).

This study seeks to identify correlates in trabecular bone architecture in living subjects of known locomotor patterns in the calcaneus and 1st metatarsal. We test the following hypotheses:

1. Runners display greater trabecular density, thickness, and number than non-runners (NR) in the calcaneus and 1st metatarsal due to the extreme forces generated during running.
2. FFS have more robust calcaneal trabecular architecture than RFS, likely due to increased Achilles tendon forces.

Methods

- Subjects: 19 healthy males aged 20-41 – 6 FFS, 6 RFS, 1 mixed-footstrike runner, 6 NR
- Average weekly mileage for runners: 25-70 miles
- Five of the six NR either engage in rigorous physical activity on a regular basis or have a history of competitive sports during adolescence

Table 1: Participant Summary

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean ± SD</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>26 ± 5</td>
<td>19</td>
</tr>
<tr>
<td>Gender (male/female)</td>
<td>19/0</td>
<td>19</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>82.7 ± 14.3</td>
<td>19</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>178.5 ± 7.6</td>
<td>19</td>
</tr>
<tr>
<td>Foot length (cm)</td>
<td>26.9 ± 1.2</td>
<td>19</td>
</tr>
<tr>
<td>Foot circumference</td>
<td>43 ± 1.7</td>
<td>19</td>
</tr>
</tbody>
</table>

- Footstrike classification using high-speed motion capture
- Subjects landing on the middle third of the foot were classified as FFS
- Trabecular density appeared to be more closely associated with body weight than either FFS or RFS (fig. 5).
- A plot of trabecular thickness vs. body weight (fig. 6) shows FFS clustered near and above the best-fit line and RFS clustered near or below the line. NR values more closely followed the linear trend.
- Post hoc analysis of the residuals of body weight vs. trabecular density indicate that the difference in trabecular density between FFS and RFS approaches statistical significance (p=0.065). FFS are statistically indistinguishable from NR (p=0.244) and RFS are indistinguishable from NR (p=0.804).

- FFS displayed greater trabecular density (mean=0.258) than RFS (mean=0.227) and NR (mean=0.258). See table 2.
- Body weight was significantly predictive of trabecular density (p<0.036). However trabecular thickness appeared to be more closely associated with body weight than either FFS or RFS (fig. 5).
- A plot of trabecular thickness vs. body weight (fig. 6) shows FFS clustered near and above the best-fit line and RFS clustered near or below the line. NR values more closely followed the linear trend.
- Post hoc analysis of the residuals of body weight vs. trabecular thickness indicate that the difference in trabecular thickness between FFS and RFS is statistically significant (p=0.031) and the difference between FFS and NR approaches statistical significance (p=0.091). FFS and NR are statistically indistinguishable (p=0.832).

- FFS displayed greater trabecular thickness (mean=0.065) than RFS (mean=0.055) and NR (mean=0.061). See table 2.
- Body weight was not significantly predictive of trabecular thickness (p=0.112). However trabecular thickness appears to be more closely associated with body weight than either FFS or RFS.
- A plot of trabecular thickness vs. body weight (fig. 6) shows FFS clustered near and above the best-fit line and RFS clustered near or below the line. NR values more closely followed the linear trend.
- Post hoc analysis of the residuals of body weight vs. trabecular thickness indicate that the difference in trabecular thickness between FFS and RFS is statistically significant (p=0.031) and the difference between FFS and NR approaches statistical significance (p=0.091). FFS and NR are statistically indistinguishable (p=0.832).

Conclusions

- Near the calcaneal tuberosity, FFS display higher trabecular density than RFS, and thicker trabecular than either RFS or NR, likely a remodeling response to high Achilles tendon forces.
- In the absence of a repeat, high-strain loading regime, trabecular density and trabecular thickness near the calcaneal tuberosity of NR seems strongly influenced by body weight.
- These differences suggest the possibility for inferring locomotor patterns from the proximal region of hominin fossil calcanei. However, if hominins ran with a RFS pattern, the proximal calcaneus may not be a useful diagnostic, as it seems to reflect Achilles tendon forces rather than impact forces.
- Trabecular and cortical bone in the region of the 1st metatarsal that we sampled—just proximal to the metatarsal head—does not appear to be highly malleable to forces generated during running, at least not to a degree that allows for locomotor inference. This is surprising, given the high strain experienced by this bone during the late stance and toe-off phases of the gait cycle. The 5th metatarsal, often the first point of contact in FFS, may yield useful information.

Literature cited